
‘l-l~e paper- presents  the concepr m d  initiai tests from thc hardLvare i I ~ l ~ l e m e ~ l t a t ~ o ~  of a i o w -  

pot\-er,  high-spccci ~ e ~ ~ ~ ~ ? ~ - j ~ ~ ~ r ~ ~ b l ~  s e ~ ~ s o r  frision processor. The Extended Logic ~ ~ 1 1 ~ ! 1 i ~ ~ ~ ~  

Processing S q ~ s k r n  (ELlPS I is cle\.e’ioped to scamlessly combine rule-based  systems. fii%%y logic? 

and neural netnorits to achieve parallel fusion of sensor data in compact low power VLSI. The 

demonstration  of  the ELIPS concept  targets  the  functionality  of  image  processing  for  a fast frame 

seeker. The main  assumption  behind ELIPS is  that  fuzzy,  rule-based  and  neural forms  of 

computation  can  serve  as  the  main  primitives  of an “intelligent”  processor.  Thus,  as  classic 

processors  are  designed  to  optimize  the hardLvare implementation  of  a  set  of  fundamental 

operatiolis, ELIPS is developed as an  efficient  implementation  of  computational  intelligence 

primitives,  and  relies  on  a  set of fuzzy  set,  fuzzy  inference  and  neural  modules,  built  in 

programmable  analog  hardware.  The  hardware  programmability  would  allow  the  processor  to 

reconfigure  into  different  machines,  taking  the  most  efficient  hardware  implementation  during 

each  phase  of  information  processing.  Following  software  demonstrations  on  several  interceptor 

data. three  important ELIPS building  blocks (a f x z y  set preprocessor, a rule-based  fuzzy  system 

and a neural  network)  have  been  fabricated in analog VLSI hardware  and  tested  to  demonstrate 

tnicrosecond-processiIlg  speeds. 



Computational  intelligence  techniques.  such as fuzzy logic and  neural  nenvorks  combined wit11 the  more  traditional 

Artiiiciai Inteiligence  paradigm  of  expert  systems  proved  efficient in solving  a  category of problems  for which an 

accurate  mathematical  formulation  of  models  was  either not feasible  or  practically  impossible  to  compute in useful 

time. The most  eloquent  examples of such  problems  are in pattern  recognition  and  decision-making  applications. 

These  techniques  are  essentially  parallel,  and  thus it is natural to build  dedicated  processors  efficient in such 

operations,  and  would  function in stand-alone  mode  or  as  co-processors  to  provide  high-speed  computation on 

massive  amounts of data  with  parallel  processing.  While  these  processors  can  be  built  either in digital  or  analog 

hardware,  the  massive  amount  of  interconnection  for  parallel  implementation  and the power  requirements 

encountered in certain  space,  military or commercial  applications  such  as  hand-held  devices  make  the idea of an 

analog .ASIC processor  preferable. An example of  such  an  application  requiring  low  power  fast  processing of sensor 

data is associated  with  the  discrimination  performed  onboard  interceptors. 

1.2. Iliscriminating  Interceptor Technology Requirements 

The Ballistic Missile  Defense  Organization  (BMDO) is conducting  the  Discriminating  Interceptor  Technology 

I'rogram (D17'P) for  the development  of  advanced and enabling fast frame  seeker  capabilities.  The  challenge for the 

technology is to combat more complex  future  threats  facing  the  National  and  Theater  Missile  Defense (NMD/TILlD). 
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To meet  the  chaliznge of compact, low power.  and  high-speed  on-board  data  processing.  a  novel  intelligent  sensor 

data  fusion  processing  architecture, t emed the  Extended  Logic  Intelligent  Processing  System (ELIPS). has been 

developed. ELIPS integrates  the  analog  hardware  technology of neural  networks,  fuzzy  logic,  and  expert rule 

processing  with  the  conventional digital processing  using  a host computer.  The  individual  modules  are  designed to 

be reconfigurable  and  cascadable. In addition,  the  overall  architecture  has been developed  to be flexible  enough  for 

rerouting  of  signals to any  required  processing  module  by  having an interconnecting  network  with  switching  arrays. 

This  paper  briefly  describes  the ELIPS concept  and  architecture,  focusing  more on  the  hardware  implementation of 

the  individual ELIPS component  modules.  Experiments  with  test  chips  implementing  ELIPS  modules  illustrate  the 

performance of  the  analog ASIC implementation. 

2 .  FUZZY, EXPERT, AND NEURAL GONIPUTATION 

Expert  systems  have been employed i n  a  variety of sensor  fusion  applications;  a  recent  example is detailed for 

guiding the  user i n  defining the architecture for the sensor  fusion  system[?-]. Fuzzy logic  and  neural  networks  are 

also becoming  widely  accepted i n  the sensor fusion community  as  techniques. which  proved  powerful i n  sensor 

fusion  applications[i-.ll. 
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N Z Q  COiiC~pis from fizz;: SCIS theor); have  rwitalized the 11se of r~~le-bas;. sq'ste::1, 1vhici1 c a  lhus hetter c o p  ivi th  

t!he imprecision in matchirg antecedent clauses. The main operatims of fuzz:,, reasoning are fuzzification, rule 

evaluatioils and defuzziflcation.  Fuzzification  transforms  a  crisp i n p u t  to a degree of me~nbership  to a iilzzy set and 

certain  ruies  are  evaluated  depending on which  fuzzy  sets  are  matched.  For  certain  problems  such  as  classification. 

this is the  end of  fuzzy  reasoning - the  output  results  are fuzzy sets  and  degrees  to  which  they  are  matched. For 

example,  the  output result can  be  that  input  signals  match  the  characteristics  of  target A to 0.S extent,  targets B in 

degree 0,4 and  decoys in degree 0.3; sometimes  this  can be (improperly)  expressed  as  probabilities,  i.e.,  there is 80% 

chanceiprobabilityiconfidence that  object is target A, etc. If the  desired  output is a  crisp  one,  for  example an output 

control  signal - the  output  sets  and  the  associated  degrees of memberships  are  transformed by a  defuzzifier into a 

crisp  value.  Amongst  the  most  popular  methods  for  defuzzification is the  center  of  gravity  method,  which  requires 

mainly  additions  and  multiplication. 

Neural  networks  are  parallel  computation  structures  characterized  by  somatic  operation  between  inputs  and  weights 

and  somatic  operations  aggregating  the  weighted  inputs  and  usually  passing them  through  a  nonlinear  function. 

Different  neural  architectures  were  esplored, with  different  ways  of  interconnecting  the  neurons in feed-forward 

only  or in recurrent  mode as well,  and  with  a  variety  of  learning  rules. 

Requirements for fast processing,  compact  or low power  implementation lead to efforts for developing  various 

hardware  implementatio~~s. The nature  of  computations  involved in 1'uzy reasoning is essentially  parallel (for 



The same  parallelism is true  for  neural  processing, and ideally  hardware  implementations  should be parallel  for 

maximum  efficiency. I n  the same way as for  fuzzy  expert  systems,  large  number of interconnections  and low power 

justify  analog V U 1  implementations of  neural  processors. A detailed  justification of analog  neural  processors is 

presented i n  Ref. [ 121. 

3.  ELIPS CONCEPT AND ARCHITECTURE 

The main assumption  behind ELIPS is that  fuzzy,  rule-based  and  neural  forms  of  computation can serve  as  the  main 

primitives  of an “intelligent”  processor.  Thus, in the  same  way  as  classic  processors  are  designed to optimize  the 

hardware  implementation of a  set  of  fundamental  operations, ELIPS is developed  as an efficient  implementation of 

computational  intelligence  primitives. and  relies on a set of fuzzy  set, f ~ ~ z z y  inference  and  neural  modules, built in 

programmable  analog  hardware.  The  hardware  programmability  allows the processor to be  reconfigured into 

different  machines.  taking  the  most  efficient  hardware  implementation  during  each  phase of information  processing. 

Ihc ELIPS architecture is designed to accomplish, for  thc first time, a f t ~ l l y  parallel  implementation  and  seamless 

integration of thrcc artificiall’conlputatiorlnl intelligence  technologies: ( I )  mentbei-ship-functio~~-based fuzzy logic: 

(2) rule-based  expert  systems;  and (3) massively  parallel  artificial  neural  network. I n  its initial demonstration, ELIPS 



4.1. The fuzzy set module: FSP 

The  main  function of a fuzzy set  processor is signal  transformation,  which can be interpreted  for  example  as 

* fuzzification - i.e. association between an input  crisp  signal  and  a  degree of membership  to  a  fuzzy set!class, or 

* signal  conditioning/  non-!inear  transformation,  coordinate  transformation. 

The FSP was  designed as a  processing  module  with 16 inputs of 5 membership  classes  each.  The  architecture of the 

FSP is presented in Figure 2. The  chip  has 16 analog  voltage  inputs  and 16x5 outputs,  and  allows  digital 

programmability of the membership  functions  for  each  input  variable.  The  membership  functions  have  trapezoidal 

shape, with programmable  parameters  for  the  legs  and  slopes  as  illustrated i n  Figure 3. ‘lhe  position  of  the  legs  can 

be specitied with X-bit resolution  and  the  slope  with  5-bit  resolution.  TIle  equations  that  describe  the outpLlt of a 

trapezoidal  membership  function  are: 

I f  X ‘i = A,  Y = L,OLS 

i f  ‘4 < X = -< (CD-tAB)i(B-+C), Y=MlN(BX-AB + Low, High) 

If(CDtAB)/(B-tC) < X < D, Y=MIN(-CX f C D  t Low, tligh) 



! l e  schematic i i i agrm i n  Fistire 3 clciail: tile processing pail? o f a  single  membership  function  circuit (MFC]. Whiiz 

inpllts a n d  outputs arc  i n  \ ,o!~age ~noclt' fhr  exterm! comptibi l i r \ ,  the Entri-nal b1FC i~nple j~ len~a~i [~ : l  is in current- 

mm!c. l h z  :;:put voltage ttiltcrs thc first processing block, \vhich is a Voltage to CLlrrent ( V i )  con~er!er. Currents 

proportional to the  digital  values of the legs, A and D. are generated in Multiplying Digital to Analog  Converters 

(4113)ACs). ' l l : ~  current corresporlding to the lefr leg get: sabtracted from a copy of the  input currcnr, while  a 

different cop) o f  the inpul current gets subtractzd from tile right l<g current.  The  resuiting  currents: n4lich 

correspond to the kf t   and right  sides of the  trapezoid,  enter  their appropriate Dividing  Digital  to  Analog  Converter 

(divDACj where  the  signals  are  divided by 5-bit  digital  values  to  scale  the  slopes. 'T'he minimum of the  two resulting 

vaiues is then  selected  which  chooses  the  side  that is along  the  trapezoid.  The  top of the  trapezoid is achieved by 

taking  the  minimum of the  resulting  current  and  the  full-scale  current,  and  this  result is converted to the  voltage 

output of the MFC. A test  chip  for 2 input  variabies  with 5 membership  functions  calculating  the  degree of 

mernbership  has  been  implemented  and  tested. A variety  of  membership  functions  generated  by  the  chip is 

illustrated in Figure 4. 

- .  

Signals  obtained  from  the  chip  are  also  illustrated  below in a  discrimination  task.  The  results  are  compared  with  the 

software  implementation  and  show  accurate  reproduction in hardware  of  the  results  obtained by simulation.  Figures 

5 and 6 shows how the  membership  functions  are used to  separate  the  spaces  containing  targets  and  decoys.  The 

software  siinulations art: shown on  the left and  the  programmed  hardware  output of the membership is shown on  the 

right.  The  variables  are  transformations  of  some  measured  parameters  characterizing  target  and  decoy  signals. 'I'he 

software  results show that signals  processed  using  these  membership  functions  would  results in discrimination  of 

targets  and  decoys.  as  well as targets  of  different  types  based  on  available DlTP data.  Figure 5 shows only 

discrimination  between  targets  and  decoys.  Figure 6 shows  further  discrimination  distinguishing  individual  targets. 

'Ihe  hardware tosts show that  the  fLmitication  /discrimination ofthis type w o u l d  take less than a  microsecond. 
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. . ~  

R L I I C  n .  ii; ;.l: is dlIll A S U  it2 is A N D  ... aln is iZ,,,,, THE8 y is Y,, 

u;ht.re 'A, ,  arc fibi;,i>:z> sets o r  their complzments, i.e. i f  /Iii,! is a predetermined  trapezoidai  membership ftrnction!fuzzy 

sci a d  A i A  is i:s c o m p i w ~ e n ;  then A, = NO'T(Ai,,,). Consider  the cizgree o f  ~l~enlbersilip!'matc~li~lg a fuzz>- seticiass 

being calculakd bq the FSP; and thus "a is A'' being  replaced w i t h  u. which is the degree to which "a is A". The 

c ~ ~ m p l c m e n ~  is comn1oni> calculated  zither  as  the  difference to unity. i.e. NO'l"(u) = I-u, or as  the  maximum  of all 

other  classes  except  the  one to be complemented,  i.e. if classes  covering input space  are ul ,u2.~3.u4 then  the 

complement is NOT(u3) = M24X(ul,u2,u4). We built test  circuitry  to  calculate the complement in both  ways  but 

only  the  second version was so far  integrated  within  a  rule-system  chip.  The  conjunction AND is treated  as  the MIN 

operator.  Thus,  the  antecedent  "a, is A,,, AND a, is Ail? AND ... a,,, is can be read  after  fuzzification as ( ~ 1 , ~  

AND ullL AND u,,,,,) and  calculated  as u,, = MIN(u,, , ,  uIlz, .... ullrn). The  collection of rules in the  rules  base can  be 

read  as  Rule 1 ,  OR  Rule 2, OR ... Rule n; several  rules  may  refer to the  same  conclusioniclass.  The logical 

connective OR is calculated as MAX, thus  the  degree of supporting an output  class is the  maximum  of all the 

degrees  of  supporting  that  class  coming  from  different  rules in the  rule-base. 

The processing  stages  calculating  complement,  conjunction  and  disjunction  are  reflected  directly in the  MERP 

architecture  presented  schematically in  Figure 7 .  Stage 1 calculates  the  complement by MAX operation;  Stage 2 

calculates  the  conjunction  within  the  same rule by MIN operator;  Stage 3 calculates  the  disjunction of all rules  that 

refer to the same  conclusion by M A X  operator.  The  controls  specify which components  are  selected for M I N  and 

MAX i n  different rules. 
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In rhc s c c m d .  a ~ m s ! ! e r  ~ ~ " r s i n n  o f?v iERP (cslieii ~~~~~~j~~~~~~ iv i th  I! inpuis ani! 4 ruies \vas fabricxed on a rcsr chip. 

1 he block i?iagr:irn for the chip is iliustrated in Figure 10: the  chip was fabricated and tested  successfully. The 

propagaLion Iime of a sigmi  from inputs to output was around  two  microseconds.  Phase 3 ofdzveiopnlent consists i l l  

integrating 8 analog  inputs. -10 membership  functions  and 9 rules  circuits on the  same  Fuzzy  Expert  System (FES) 

chip.  The  membership  functions  are  digitally  programmable  trapezoids.  The  rules  are  digitally  programmed to 

select  from  various  membership  functions  for  each  input  variable,  including  membership  function  complements. 

Each  rule  performs  a  conjunction  amongst  selected  membership  functions  and  their  complements  (one  per  variable). 

A l l  analog  circuitry is current-mode  and  the  rule  output  currents  are  available in parallel  on  nine  separate  lines.  The 

chip  was  fabricated  and is currently  under  test. 

,. 

4.3. The neural  modules: PFN and PKN 

Neural  network  modules  are  implemented  around  a  neural  chip  architecture  developed  at JPL [ 12. 141. The  chip, 

code  named  NN64,  and  schematically  illustrated in Figure I I consists of a 64 x 64 array of 8-bit  synapses  with  8-bit 

local  static  memory, 64 neurons,  and  registers  for  data  and  control.  The  chip is designed  to  implement  a  feed- 

forward or a  recurrent  neural  network with various  network  topologies w i t h  up to 64 neurons. 

4.3. I .  Functionrrl rlr?srriptiott of utrrrlog prorcssing in 1VN64: The 64 analog voltage  inputs First get  converted to 

currents by a  row of V-I converters a t  the top  o f  the 64 s 64 synaptic  array. Each V-l circuit  actually  produces two 
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4.3.2. l~igitalprogrrnnmi~~g u f  NY64: The  synapses  are  loaded  single row at a  time. The data  for  a  given row is 

clocked into a 64  long  8-bit  wide  shift  register,  one  byte at a  time.  After  64  clock  cycles.  the  data  for an entire row of 

synapses is ready  to be  loaded  into  the local memory of each  MDAC. A &bit row address is supplied  and an active- 

low load  signal is asserted,  which  dumps  the  data into the  synapses on  the  row  specified.  Alternatively,  a 

synchronous  loading  scheme  may be  used.  This  method  employs  a  single bit shift  register to act  as  a  token  ring  and 

specify  consecutive  rows  for  loading.  When  reset is asserted,  the  top  of  the token  ring corresponding  to row 1 is set 

while  the rest of the  shift  register is reset.  As  data is clocked in, a 6-bit  counter  keeps  track of how  many  bytes  have 

been  loaded.  When  the  carry-out of the  counter  indicates  that  the  data  has been entirely  loaded,  a load  signal is 

automatically  generated that activates  the row on  its rising  edge  and  passes  the  token to the  next  row on its ihiling 

edge. I n  this way the  entire  array of synapses can be loaded  from  the  top  row doLvt1  by simply  clocking in 4096  bytes 

o f '  data.  Neurons  are  also  programmed with a  single bit shift  register. I f  a  control signal is asserted, all neurons  are 

automntically  bypassed  since  the  entire  register is reset.  Otherwise,  a  single bit is clocked by a special  clock 64 

tinles. The register  loads From the  bottom  up so that  the first data  loaded  corrcsponcls t o  the first row netmn. More 



4.4.1. ~ ~ ~ ~ r ~ f ~  ' ~ e ~ i ~ ~ ~  Fu::l* Expert ex  st^^?^ (A'FES): 1% n e n  test chip, termed ELIPS3, contains the second 

generatiGi1 i\/lcnibcrship  r"unction  Circuit (M1-C) ivliich is a v o j t a y  input,'oulput  circuit  that uses current-mode 

processing  and is digitail? programmable with a  generic  trapezoidal  shape  membership  function. ELII'S3 contains 

ten MFCs, five  of  which  are  associated  with  each of the  two  input  variables. h o t h e r  test  chip;  termed FES1, 

contains  a  similar  circuit for the  membership  function  processing but the l/V output  conversion is eliminated  and  the 

current is directly  passed to the  rule  circuits,  which  are  part  of  the MERP. Current-mode  rule  circuits  process  the 

membership  function  information on the  same  chip  before  creating  as  output  the  conclusions  of  nine  different 

digitally  programmed  rules.  The  rules  are  conjunctive (AND) and  complemented or non-complemented  membership 

function  values  may  be  used  for  processing.  FES 1 contains  forty  membership  function  circuits  with  five  associated 

with  each of  eight input variables. Each of  the  nine  rules  may  be  configured  to  process  any  combination of 

complemented  or  non-complemented  membership  values from any of the  eight  input  variables. 

4.4.2. F,4,V!V Boczrcl: The Fuzzy-Artificial  Neural  Networks  (FANN)  test-board  was  designed  to test the  FESl 

f~~zzy-expert chip as well as t o  allow  configurations of neural  and  fuzzy  systerns  that combine  two NK6.t chips and 

four FESl chips. Figure 13 is a photograph  of  the  FANN  test-board.  The  board  also  includes  four  analog 

multif~mction  converters  capable  of  performing  defuzzitication  processing and enabling  a  fuzzy  system entire14 i n  

I~ardware. lhc ciif1i:rent system  architecture  configurations  arc  achicvcd by setting  the  appropriate  jumper blocks, 

while the membership  ft~nction  shapes, rules. and  neural net\z.ork weights can be programmed  through the computer 

intcrfhce. L,abVIELV f : u l l  Development  System 5.1 software is used to program  the  FANN  via  National  Instruments 
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The board ailows 4 FES chips to be mounted 011 it, such t h a t  u p  10 36 rules  can be ~ ~ - O ~ I X I I > I I I ~ C ~ .  Ir: addition, the 

hoard  incorporates the design for testing of  the neural  network  chips.  with 2 N N 6 J  cllips and a group of 16 q u d  - 

, \  D chlps. ' I  he board a m s  t o  pl;ty multiple I-oles. allowing: 

the test of the  FES and NN64 chips individually, 

the test o!'thi: chips in tandem  configuration, e.2. FES followed by NN64, etc. 

thc t e s ~  of thc fusion algorithm in imdware, using  the  neural chips. 

I .. Ljitimateiy. thz ELIPS moduies  couid be  integrated to provide an inteiiigenr  processor as a mulci-chip  moduie. A 

sketch  visualization of the final  integrated  product is illustrated in Figure 13. 

5.  C O ~ C ~ ~ S I Q N S  

Current  technolog). ailo\vs the  realization  of  a  sensor 5islon processor  on a chip. A trade-off is to  be  made  between 

the  performance and cost of such a processor.  Computational  intelligence  elements  such  as ftlzzy  reasoning  and 

neural  networks  technology  are  considered  fundamental  for  a  sensor  fusion  chip.  Several  test  chips  implementing 

components  of  the  ELIPS  sensor  fusion  architecture  have been  fabricated i n  analog VLSI hardware  and 

demonstrated  processing  times of the  order of microsecond for a  variety  of  tasks,  such  as  target  classification  from 

preprocessed  data. 
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Figure 1. ELIPS a r c h ~ t e c ~ ~ e  and  main c o m ~ L ~ ~ ~ ~ o n a 1  modules 

Figure 2. FSP  architecture Figure 4. A variety of membership h c t i o n  shapes 
generated on the  MFC  test  chip 
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Figure 3. Block diagram of CiW implementation for a  simple MFG 
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Figure 5. Soflware (left) and  hardware (right) generated ~ e ~ ~ e r ~ h i p  functions in a d i s c ~ m i n ~ t ~ o n  task: target vs. decoy 
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Figure 6. Software  (left)  and  hardware (right) generated  membership  functions in a  discrimination task: target 1 vs. target 2 

Figure 7. Schematic of MEIII’ architecture 



Figure 8. A more ~ e t a i l ~ ~  design of 

Figure 10. Block diagram of an analog  mini-MERP  test  chip 
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Figure 1 1 .  Diagram of a neuron-synapse  composite  chip  configured as a feed-forward neural  network. 



Figure 12. Photo of the %X64 on rest board, experimental set-up, and robot visuallq- tracking a path under NN64 control 

Figure 13. Photograph of the FANN test-board 

Figure 14. Visualization o f a  sensor fusion processor as  a  multi-chip  module. 


